Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Exp Med Biol ; 1429: 111-125, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37486519

RESUMO

Chagas disease, caused by the protozoan parasite Trypanosoma cruzi, is an illness that affects 6-8 million people worldwide and is responsible for approximately 50,000 deaths per year. Despite intense research efforts on Chagas disease and its causative agent, there is still a lack of effective treatments or strategies for disease control. Although significant progress has been made toward the elucidation of molecular mechanisms involved in host-parasite interactions, particularly immune evasion mechanisms, a deeper understanding of these processes has been hindered by a lack of efficient genetic manipulation protocols. One major challenge is the fact that several parasite virulence factors are encoded by multigene families, which constitute a distinctive feature of the T. cruzi genome. The recent advent of the CRISPR/Cas9 technology represented an enormous breakthrough in the studies involving T. cruzi genetic manipulation compared to previous protocols that are poorly efficient and required a long generation time to develop parasite mutants. Since the first publication of CRISPR gene editing in T. cruzi, in 2014, different groups have used distinct protocols to generated knockout mutants, parasites overexpressing a protein or expressing proteins with sequence tags inserted in the endogenous gene. Importantly, CRISPR gene editing allowed generation of parasite mutants with gene disruption in multi-copy gene families. We described four main strategies used to edit the T. cruzi genome and summarized a large list of studies performed by different groups in the past 7 years that are addressing several mechanisms involved with parasite proliferation, differentiation, and survival strategies within its different hosts.


Assuntos
Doença de Chagas , Trypanosoma cruzi , Humanos , Edição de Genes/métodos , Sistemas CRISPR-Cas/genética , Doença de Chagas/genética , Doença de Chagas/parasitologia , Trypanosoma cruzi/genética
2.
J Biol Chem ; 299(7): 104857, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37230387

RESUMO

The TcK2 protein kinase of Trypanosoma cruzi, the causative agent of Chagas disease, is structurally similar to the human kinase PERK, which phosphorylates the initiation factor eIF2α and, in turn, inhibits translation initiation. We have previously shown that absence of TcK2 kinase impairs parasite proliferation within mammalian cells, positioning it as a potential target for treatment of Chagas disease. To better understand its role in the parasite, here we initially confirmed the importance of TcK2 in parasite proliferation by generating CRISPR/Cas9 TcK2-null cells, albeit they more efficiently differentiate into infective forms. Proteomics indicates that the TcK2 knockout of proliferative forms expresses proteins including trans-sialidases, normally restricted to infective and nonproliferative trypomastigotes explaining decreased proliferation and better differentiation. TcK2 knockout cells lost phosphorylation of eukaryotic initiation factor 3 and cyclic AMP responsive-like element, recognized to promote growth, likely explaining both decreased proliferation and augmented differentiation. To identify specific inhibitors, a library of 379 kinase inhibitors was screened by differential scanning fluorimetry using a recombinant TcK2 encompassing the kinase domain and selected molecules were tested for kinase inhibition. Only Dasatinib and PF-477736, inhibitors of Src/Abl and ChK1 kinases, showed inhibitory activity with IC50 of 0.2 ± 0.02 mM and 0.8 ± 0.1, respectively. In infected cells Dasatinib inhibited growth of parental amastigotes (IC50 = 0.6 ± 0.2 mM) but not TcK2 of depleted parasites (IC50 > 34 mM) identifying Dasatinib as a potential lead for development of therapeutics for Chagas disease targeting TcK2.


Assuntos
Doença de Chagas , Parasitos , Trypanosoma cruzi , Animais , Humanos , Trypanosoma cruzi/genética , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo , Dasatinibe , Doença de Chagas/tratamento farmacológico , Doença de Chagas/parasitologia , Proliferação de Células , Mamíferos/metabolismo
3.
PLoS Negl Trop Dis ; 16(10): e0010845, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36260546

RESUMO

Chagas disease, caused by the protozoan Trypanosoma cruzi, is a serious chronic parasitic disease, currently treated with Nifurtimox (NFX) and Benznidazole (BZ). In addition to high toxicity, these drugs have low healing efficacy, especially in the chronic phase of the disease. The existence of drug-resistant T. cruzi strains and the occurrence of cross-resistance between BZ and NFX have also been described. In this context, it is urgent to study the metabolism of these drugs in T. cruzi, to better understand the mechanisms of resistance. Prostaglandin F2α synthase (PGFS) is an enzyme that has been correlated with parasite resistance to BZ, but the mechanism by which resistance occurs is still unclear. Our results show that the genome of the CL Brener clone of T. cruzi, contains five PGFS sequences and three potential pseudogenes. Using CRISPR/Cas9 we generated knockout cell lines in which all PGFS sequences were disrupted, as shown by PCR and western blotting analyses. The PGFS deletion did not alter the growth of the parasites or their susceptibility to BZ and NFX when compared to wild-type (WT) parasites. Interestingly, NTR-1 transcripts were shown to be upregulated in ΔPGFS mutants. Furthermore, the ΔPGFS parasites were 1.6 to 1.7-fold less tolerant to oxidative stress generated by menadione, presented lower levels of lipid bodies than the control parasites during the stationary phase, and were less infective than control parasites.


Assuntos
Doença de Chagas , Tripanossomicidas , Trypanosoma cruzi , Humanos , Nifurtimox/uso terapêutico , Dinoprosta/uso terapêutico , Tripanossomicidas/uso terapêutico , Vitamina K 3/uso terapêutico , Doença de Chagas/parasitologia , Estresse Oxidativo
4.
Mol Biochem Parasitol ; 203(1-2): 25-33, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26523948

RESUMO

Trypanosoma cruzi is a protozoan parasite that causes Chagas disease, an illness that affects 6-7 million people and for which there is no effective drug therapy or vaccine. The publication of its complete genome sequence allowed a rapid advance in molecular studies including in silico screening of genes involved with pathogenicity as well as molecular targets for the development of new diagnostic methods, drug therapies and prophylactic vaccines. Alongside with in silico genomic analyses, methods to study gene function in this parasite such as gene deletion, overexpression, mutant complementation and reporter gene expression have been largely explored. More recently, the use of genome-wide strategies is producing a shift towards a global perspective on gene function studies, with the examination of the expression and biological roles of gene networks in different stages of the parasite life cycle and under different contexts of host parasite interactions. Here we describe the molecular tools and protocols currently available to perform genetic manipulation of the T. cruzi genome, with emphasis on recently described strategies of gene editing that will facilitate large-scale functional genomic analyses. These new methodologies are long overdue, since more efficient protocols for genetic manipulation in T. cruzi are urgently needed for a better understanding of the biology of this parasite and molecular processes involved with the complex and often harmful, interaction with its human host.


Assuntos
Doença de Chagas/parasitologia , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes/métodos , Marcação de Genes/métodos , Genoma de Protozoário/genética , Trypanosoma cruzi/genética , Componentes do Gene , Redes Reguladoras de Genes , Genes Reporter , Interações Hospedeiro-Parasita/genética , Interações Hospedeiro-Parasita/fisiologia , Humanos , Estágios do Ciclo de Vida , RNA Líder para Processamento/genética , Trypanosoma cruzi/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...